进入她

繁体版 简体版
进入她 > 中外科学家发明家丛书 > 第1296章完结

第1296章完结

什么是圆周率呢?圆有它的圆周和圆心,从圆周任意一点到圆心的距离 称为半径,半径加倍就是直径。^w\a.n\o¨p+e~n¨.?c-o!m!直径是一条经过圆心的线段,圆周是一条弧 线,弧线是直线的多少倍,在数学上叫做圆周率。简单说,圆周率就是圆的 周长与它直径之间的比,它是一个常数,用希腊字母“π”来表示。在天文 历法方面和生产实践当中,凡是牵涉到圆的一切问题,都要使用圆周率来推 算。

如何正确地推求圆周率的数值,是世界数学史上的一个重要课题。我国 古代数学家们对这个问题十分重视,研究也很早。在《周髀算经》和《九章 算术》中就提出径一周三的古率,定圆周率为三,即圆周长是直径长的三倍。 此后,经过历代数学家的相继探索,推算出的圆周率数值日益精确。西汉末 年刘歆在为王莽设计制作圆形铜斛 (一种量器)的过程中,发现直径为一、 圆周为三的古率过于粗略,经过进一步的推算,求得圆周率的数值为 3.1547。东汉著名科学家张衡推算出的圆周率值为3.162。三国时,数学家 王蕃推算出的圆周率数值为3.155。魏晋之际的著名数学家刘徽在为《九章 算术》作注时创立了新的推算圆周率的方法——割圆术。他设圆的半径为1, 把圆周六等分,作圆的内接正六边形,用勾股定理求出这个内接正六边形的 周长;然后依次作内接十二边形,二十四边形……,至圆内接一百九十二边 形时,得出它的边长和为6.282048,而圆内接正多边形的边数越多,它的边 长就越接近圆的实际周长,所以此时圆周率的值为边长除以2,其近似值为 3.14;并且说明这个数值比圆周率实际数值要小一些。+第¢一^墈-书_枉^ ~免+费·粤^黩,在割圆术中,刘徽已 经认识到了现代数学中的极限概念。他所创立的割圆木,是探求圆周率数值 的过程中的重大突破。后人为纪念刘徽的这一功绩,把他求得的圆周率数值 称为“徽率”或称“徽术”。

刘徽以后,探求圆周率有成就的学者,先后有南朝时代的何承天,皮延

22

宗等人。何承天求得的圆周率数值为3.1428 ;皮延宗求出的圆周率值为 ≈

7 3.14。以上的科学家都为圆周率的研究推算做出了很大贡献,可是和祖冲之 的圆周率比较起来,就逊色多了。

祖冲之认为自秦汉以至魏晋的数百年中研究圆周率成绩最大的学者是刘 徽,但并未达到精确的程度,于是他进一步精益钻研,去探求更精确的数值。 它研究和计算的结果,证明圆周率应该在3.1415926和3.1415927之间;

22

为了社会上的使用便利起见,他又用     (约等于3.14 )作为“约率”(比

7

355 较简单的数)和    (约等于3.1415927)称为“密率”(比较精密的数)

133 来表示。!q_i_x′i^a.o-s!h~u\o`..c,o¢m+他成为世界上第一个把圆周率的准确数值计算到小数点以后七位数 字的人。直到一千年后,这个记录才被阿拉伯数学家阿尔·卡西和法国数学 家维叶特所打破。祖冲之提出的“密率”,也是直到一千年以后,才由德国

355

的奥托和荷兰的安托尼兹所重新得到。但是在西方数学史上,却把π=

133 称之为“安托尼兹率”,还有别有用心的人说祖冲之圆周率是在明朝末年西 方数学传入中国后伪造的。这是有意的捏造。记载祖冲之对圆周率研究情况 的古籍是成书于唐代的史书《隋书》,而现传的《隋书》有元朝大德丙午年

(公元1306年)的刊本,其中就有和其他现传版本一样的关于祖冲之圆周率 的记载,事在明朝末年前三百余年。而且还有不少明朝之前的数学家在自己 的著作中引用过祖冲之的圆周率,这些事实都证明了祖冲之在圆周率研究方 面卓越的成就。

那么,祖冲之是如何取得这样重大的科学成就呢?可以肯定,他的成就 是建立在前人研究的基础之上的。从当时的数学水平来看,祖冲之很可能是 继承了刘徽所创立和首先使用的割圆术,并且加以发展,因此获得了超越前 人的重大成就。在前面,我们提到割圆术时已经知道了这样的结论:圆内接 正n边形的边数越多,各边长的总和就越接近圆周的实际长度。但因为它是 内接的,又不可能把边数增加到无限多,所

『加入书签,方便阅读』